
CHAPTER 9

Matchings

9.1. Bipartite matchings and network flows. The last network optimization
problem we shall study has close connections with the maximum flow problem. Let
G = [V, E] be an undirected graph each of whose edges has a real-valued weight,
denoted by weight (v, w). A matching M on G is a set of edges no two of which have
a common vertex. The size M 1 of M is the number of edges it contains; the weight of
M is the sum of its edge weights. The maximum matching problem is that of finding
a matching of maximum size or weight. We shall distinguish four versions of this
problem, depending on whether we want to maximize size or weight (unweighted
versus weighted matching) and whether G is bipartite or not (bipartite versus
nonbipartite matching). The weighted bipartite matching problem is commonly
called the assignment problem; one application is the assignment of people to tasks,
where the weight of an edge {x, y} represents the benefit of assigning person x to
task y.

Bipartite matching problems can be viewed as a special case of network flow
problems [8]. Suppose G is bipartite, with a vertex partition X, Y such that every
edge has one end in X and the other in Y. We shall denote a typical edge by {x, y}
with x c X and y c Y. Let s and t be two new vertices. Construct a graph G' with
vertex set V u {s, t}, source s, sink t, and capacity-one edges [s, x] of cost zero for
every x c X, [y, t] of cost zero for every y c Y, and [x, y] of cost — weight (x, y) for
every {x, y} c E. (See Fig. 9.1.) G' is a unit network as defined in Chapter 8.

An integral flow ./ on G' defines a matching on G of size if 1 and weight —cost()
given by the set of edges {x y} such that [x, y] has flow one. Conversely a matching
M on G defines a flow of value I M I and cost — weight(M) that is one on each path
[s, x], [x, y], [y, t] such that {x, y} c M. This means that we can solve a matching
problem on G by solving a flow problem on G'.

Suppose we want a maximum size matching. Any integral maximum flow on G'
gives a maximum size matching on G. We can find such a flow in o(ji m) time
using Dinic's algorithm, since G' is unit (see Theorem 8.8). Thus we have an
O(m)-time algorithm for unweighted bipartite matching. This algorithm can be
translated into the terminology of alternating paths (which we shall develop in the
next section), and it was originally discovered in this form by Hoperoft and Karp
[13]. Even and Tarjan [7] noted the connection with Dinic's algorithm.

Suppose we want a maximum weight matching. Since G' is acyclic, it has no
negative cost cycles, and we can apply minimum cost augmentation to G' (see §8.4).
Starting with the zero flow, this method will produce a sequence of at most n/ 2
minimum cost flows of increasing value, the last of which is a minimum cost
maximum flow. Because successive augmenting paths have nondecreasing cost
(Lemma 8.4), if we stop the algorithm just after the last augmentation along a path

113

D
ow

nl
oa

de
d

03
/1

3/
16

 to
 1

55
.1

98
.3

0.
43

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

114
	

CHAPTER 9

(a) 5

(b) -5

FIG. 9.1. Transformation of a bipartite matching problem to a network flow problem. (a) Bipartite
graph defining a weighted matching problem. (b) Corresponding network. Numbers on edges are costs;
all capacities are one.

of negative cost we will have a flow corresponding to a maximum weight matching.
As implemented in §8.4, minimum cost augmentation solves the weighted bipartite
matching problem in 0(n mlog (2 , min)n) time. This method, too, can be translated
into the terminology of alternating paths, and it was discovered in this form by Kuhn
[17], who named it the Hungarian method in recognition of Konig [15], [16] and
Egervary's [5] work on maximum matching, which among other results produced
the Konig—Egervary theorem. This theorem is the special case of the max-flow
min-cut theorem for unweighted bipartite matching: the maximum size of a
bipartite matching is equal to the minimum size of a vertex set containing at least
one vertex of every edge.

9.2. Alternating paths. Nonbipartite matching is more complicated than bipar-
tite matching. The idea of augmenting paths carries over from network flow theory,
but to get efficient algorithms we need another idea, contributed by Edmonds in a
paper with a flowery title [3]. In this section we shall develop the propertjes of
augmenting paths in the setting of matching theory.

Let M be a matching. An edge in M is a matching edge; every edge not in M is
free. A vertex is matched if it is incident to a matching edge and free otherwise. An
alternating path or cycle is a simple path or cycle whose edges are alternately
matching and free. The length of an alternating path or cycle is the number of edges
it contains; its weight is the total weight of its free edges minus the weight of its
matching edges. An alternating path is augmenting if both its ends are free vertices.
If M has an augmenting path then M is not of maximum size, since we can increase
its size by one by interchanging matching and free edges along the path. We call this
an augmentation. The following theorem is analogous to Lemma 8.2:D

ow
nl

oa
de

d
03

/1
3/

16
 to

 1
55

.1
98

.3
0.

43
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MATCH INGS	 1 15

THEOREM 9.1 [3, 13]. Let M be a matching, Si a matching of maximum size, and
k - -1 Mi — I Mi. Then M has a set of k vertex-disjoint augmenting paths, at least
one of length at most nl k — 1.

Proof Let M M be the symmetric difference of M and M , the set of edges in
M or in M but not in both. Every vertex is adjacent to at most two edges of
M M; thus the subgraph of G induced by M M consists of a collection of
paths and even-length cycles that are alternating with respect to M (and to M).
M M contains exactly k more edges in M than in M; thus it contains at least k
paths that begin and end with an edge of M . These paths are vertex-disjoint and
augmenting for M; at least one has length at most n/k — 1.

Berge [2] and Norman and Rabin [20] proved a weaker form of Theorem 9.1: A
matching is of maximum size if and only if it has no augmenting path. We can
construct a maximum size matching by beginning with the empty matching and
repeatedly performing augmentations until there are no augmenting paths; this
takes at most n/2 augmentations. We call this the augmenting path method for
maximum matching. Before discusring how to find augmenting paths, let us obtain
a result for weighted matchings analogous to Theorem 8.12.

THEOREM 9.2. Let M be a matching of maximum weight among matchings of
size Mi, let p be an augmenting path for M of maximum weight, and let M' be the
matchingformed by augmenting M using p. Then M' is of maximum weight among
matchings of size) M + 1.

Proof. Let M be a matching of maximum weight among matchings of size
1 Mi + 1. Consider the symmetric difference M M. Define the weight of a path
or cycle in M M with respect to M. Any cycle or even-length path in M O M
must have weight zero; a cycle or path of positive or negative weight contradicts the
choice of M or M , respectively. M 0 M contains exactly one more edge in M than
in M; thus we can pair all but one of the odd-length paths so that each pair has an
equal number of edges in M and in M . Each pair of paths must have total weight
zero; a positive or negative weight pair contradicts the choice of M or M.
Augmenting M using the remaining path gives a matching of sizeiMi + 1 and of
the same weight as M . The theorem follows. 0

Theorem 9.2 implies that the augmenting path method will compute maximum
weight matchings of all possible sizes if we always augment using a maximum
weight augmenting path. The analogue of Lemma 8.4 holds for matchings; namely,
this method will augment along paths of successively decreasing weight. Thus if we
want a maximum weight matching, we can stop after the last augmentation along a
path of positive weight.

9.3. Blossoms. There remains the problem of finding augmenting paths, maxi-
mum weight or otherwise. The natural way to find an augmenting path is to search
from the free vertices, advancing only along alternating paths. 1f a search from one
free vertex reaches another, we have found an alternating path. This method works
fine for bipartite graphs, but on nonbipartite graphs there is a subtle difficulty: a
vertex can appear on an alternating path in either parity, where we call a vertex even

D
ow

nl
oa

de
d

03
/1

3/
16

 to
 1

55
.1

98
.3

0.
43

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

116
	

CHAPTER 9

FIG. 9.2. A graph in which it is hard to find an augmenting path. If we search from a and allow one
visit per vertex, labeling c and e odd prevents discovery of the augmenting path [a, c, d, f, e, g].
Allowing two visits per vertex may produce the supposed augmenting path [a, c, d, e, f, d, c, b].

if it is an even distance from the starting free vertex and odd otherwise. (Edmonds
[3] called even vertices "outer" and odd vertices "inner".) If during the search we
do not allow two visits to a vertex, one in each parity, we may miss an augmenting
path; if we allow visits in both parities we may generate a supposedly augmenting
path that is not simple. (See Fig. 9.2.)

Such an anomaly can only occur if G contains the configuration shown in Fig. 9.3,
consisting of an alternating path p from a free vertex s to an even vertex v and an
edge from v to snother even vertex w on p. We cail the odd-length cycle formed by
1v, w} and the part of p from w to v a blossom; vertex w is the base of the blossom and
the part of p from s tow is the stem of the blossom. Edmonds [3] discovered how to

FIG. 9.3. Shrinking a blossom. (a) Blossom defined by path from s to d and cycle [d, e, f, g, h, d].
Vertex d is the base. (b) Shrunken blossom. Augmenting path from s to i(j) corresponds to augmenting
path in original graph going around blossom clockwise (counterclockwise).D

ow
nl

oa
de

d
03

/1
3/

16
 to

 1
55

.1
98

.3
0.

43
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MATCHINGS	 1 17

deal with this situation: We shrink the blossom to a single vertex, called a shrunken
blossom, and look for an augmenting path in the shrunken graph G.

In our discussion we shall sometimes not distinguish between the expanded and
shrunken forms of a blossom; the graph being considered wilt resolve this ambiguity.
The following theorem justifies blossom-shrinking:

THEOREM 9.3. If G' is formed from G by shrinking a blossom b, then G' contains
an augmenting path !land only if G does.

Proof(only if). Suppose G' contains an augmenting path p. If p avoids b, then p is
an augmenting path in G. If p contains b, either b is a free vertex or p contains the
matching edge incident to b. In either case expansion of the blossom either leaves p
an augmenting path or breaks p into two parts, one of which contains the base of
blossom, that can be reconnected to form an augmenting path by inserting a path
going around the blossom in the appropriate direction from the base (see Fig. 9.3).
Thus G contains an augmenting path. EI

The "if" direction of Theorem 9.3 is harder to prove; we shall obtain it by proving
the correctness of an algorithm developed by Edmonds [3] that finds augmenting
paths using blossom-shrinking. The algorithm consists of an exploration of the
graph that shrinks blossoms as they are encountered. The algorithm builds a forest
consisting of trees of alternating paths rooted at the free vertices. For purposes of
the algorithm we replace every undirected edge fv, by a pair of directed edges
[v, w] and [w, v]. Each vertex is in one of three states: unreached, odd, or even. For
any matched vertex v, we denote by mate (v) the vertex w such that {v, w} is a
matching edge. For each vertex v the algorithm computes p(v), the parent of v in the
forest. Initially every matched vertex is unreached and every free vertex v is even,
with p(v) = nul!. The algorithm consists of repeating the following step until an
augmenting path is found or there is no unexamined edge [v, w] with v even (see
Fig. 9.4):

EXAMINE EDGE (Edmonds). Choose an unexamined edge [v, w] with v even and
examine it, applying the appropriate case below:

Case 1. w is odd. Do nothing. This case occurs whenever {v, w} is a matching edge
and can also occur if {v, w} is free.

Case 2. w is unreached and matched. Make w odd and mate (w) even; define
p(w) = v and p(mate (w)) = w.

Case 3. w is even and v and w are in different trees. Stop; there is an augmenting
path from the root of the tree containing v to the root of the tree containing w.

Case 4. w is even and v and w are in the same tree. Edge fv, w} forms a blossom.
Let u be the nearest common ancestor of v and w. Condense every vertex that is
a descendant of u and an ancestor of v or w into a blossom b; define p(b) = p(u)
and p(x) = b for each vertex x such that p(x) is condensed into b.

We call this the blossom-shrinking algorithm. A vertex (either an original or a
blossom) is shrunken if it has been condensed into a blossom (and thus no longer
appears in the graph); any odd, even, or shrunken vertex is reached. We regard a
blossom b as containing not only the vertices on the cycle forming b but also allD

ow
nl

oa
de

d
03

/1
3/

16
 to

 1
55

.1
98

.3
0.

43
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

118
	

CHAPTER 9

+

(0)

f—

(b)

(c)

k+ d—	 m+
(d) •	 ofs.A.A.NWAN\As	

FIG. 9.4. Execution of the blossom-shrinking algorithm. Plus denotes an even vertex, minus an odd
vertex. Arrows denote parents. (a) After examining [a, c] (Case 2). (b) After examining [b, a] (Case 4),
[c, d], [e, f], [h, iJ, and [g, f] (Case 1). Vertex k = {a, b, cl. (c) After examining [e, h]. Vertex
1 = fe, f, h}. (d) After examining [1, g]. Vertex m = {g, i, 1). On examining [j, m] (Case 3), the algorithm
halts with success.

shrunken vertices combined through repeated shrinking to form the blossoms on the
cycle; that is, we treat containment as transitive.

THEOREM 9.4. The blossom-shrinking algorithm succeeds (stops in Case 3) if
and only if there is an augmenting path in the original graph.

Proof. If the algorithm succeeds, there is an augmenting path in the current
shrunken graph. This path can be expanded to an augmenting path in the original
graph by expanding blossoms in the reverse order of their shrinking, reconnecting
the broken parts of the path each time a blossom on the path is expanded, as
described in the proof of Theorem 9.3 (only if).

To prove the converse, we first note several properties of the algorithm. If v is a
reached, matched vertex, then mate (v) is also reached. If v is a shrunken, free
vertex, then v is contained in a free blossom. If the algorithm stops with failure, any
two even or shrunken vertices that were adjacent at some time during the
computation are condensed into a single blossom when the algorithm halts. To
verify this third claim, suppose to the contrary that {v, w} is an edge such that v and
w are both even or shrunken. Without loss of generality suppose v became even or
shrunken after w. Eventually either v and w will be condensed into a commonD

ow
nl

oa
de

d
03

/1
3/

16
 to

 1
55

.1
98

.3
0.

43
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MATCH1NGS 119

blossom, or an edge corresponding to [v, w] in the current shrunken graph will be
examined; such an examination causes v and w to be condensed into a common
blossom.

Suppose the algorithm fails but there is an augmenting path p =
[xo, x,, • • • , x21+ ,]. Consider the situation after the algorithm halts.

It suffices to show that x, is even (or shrunken) for all even i, 0 i 2/. For then
symmetry implies that x, is even (or shrunken) for all i, 0 i g 2/ + 1, a contradic-
tion. Thus let i be the least even index such that x, is not even or shrunken. Observe
that xi _ i is not even: i > 0 and x,_, is the mate of x,. Further x,_ 1 is not odd. Since
xi_2 is even, xi_ i is reached, which implies x,_ 1 is even. Let j be the smallest index
less than i —1 such that x„xj + i , • • • ,x,_, are even. All of these vertices are in the
same blossom. But this blossom has two bases: x,_, is the base, since its mate x, is
not in the blossom; x, is the base, since its mate is not in the blossom (j is even, and
either j > 0 and its mate is x,_ I , or j = 0 and it has no mate). This is impossible,
which implies that the algorithm must halt with success if there is an aug-
menting path. 0

Theorem 9.4 implies the "if" part of Theorem 9.3. Let G' be formed from G by
shrinking a blossom b. Suppose we run the algorithm in parallel on G and G'. On G,
we begin by following the path to and around the blossom and shrinking it. On G',
we begin by following the path to b. Now the algorithm is in exactly the same state
on G and G', and it will succeed on G if and only if it succeeds on G'.

We conclude this section with two easy-to-prove observations about the blossom-
shrinking algorithm and its use in the augmenting path method. After performing
an augmentation, we need not immediately expand all blossoms; expansion is
required only when a blossom is on an augmenting path or when it becomes an odd
vertex. Suppose that while searching for an augmenting path we generate a tree
such that every edge [v, w] with v in the tree has been examined and every edge
[w, v] with v but not w in the tree has v odd. (Edmonds called such a tree
Hungarian.) Then we can permanently delete from the graph all vertices in the tree
and in its blossoms; none will ever again be on an augmenting path, no matter what
augmentations occur.

9.4. Algorithms for nonbipartite matching. The augmenting path method, using
blossom-shrinking to find augmenting paths, will find a maximum size matching in
polynomial time. Edmonds claimed an 0(n4) time bound, which is easy to obtain;
see the book of Papadimitriou and Steiglitz [21]. Witzgall and Zahn [22] gave a
related algorithm that instead of shrinking blossoms uses a vertex labeling scheme
to keep track of the blossoms implicitly; they did not discuss running time. Balinski
[1] gave a similar algorithm that runs in 0(n3) time. Both Gabow [9], [10] and
Lawler [18] discovered how to implement Edmonds's algorithm to run in 0(n 3)
time. As Gabow noted, the running time can be reduced to 0(nma(m, n)) using the
disjoint set union algorithm discussed in Chapter 2. The linear-time set union
algorithm of Gabow and Tarjan [11] further reduces the running time, to 0(nm).
We shall describe how to implement blossom-shrinking to attain the best of these
bounds.

The hard part is to keep track of blossoms. We do this by manipulating only theD
ow

nl
oa

de
d

03
/1

3/
16

 to
 1

55
.1

98
.3

0.
43

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1 20	 CHAPTER 9

vertices in the original graph. Each vertex v in the current shrunken graph
corresponds to the set of original vertices condensed to form it. At any time during
the running of the algorithm these sets partition the original vertices; we maintain
this partition using the operations makeset, link, and find defined in Chapter 2. We
define the origin of a vertex v in the shrunken graph inductively to be v if v is an
original vertex or the origin of the base of v if v is a blossom. We label the canonical
vertex of each set (see Chapter 2) with the origin of the current vertex correspond-
ing to the set; that is, if v is an original vertex, origin (find (v)) is the origin of the
current vertex into which v has been condensed.

We represent the vertices in the current shrunken graph by their origins. Instead
of modifying the edges of the graph as blossoms are shrunk, we retain the original
edges and use origin and find to convert them into edges in the shrunken graph.
More specifically, let v' = origin (find (v)) for any original vertex v. Then [v', w'] is
the current edge corresponding to original edge [v, w]. Note that if v is unreached or
odd, v' = v.

As we explore the graph we generate a spanning forest, which we represent by
defining predecessors of the odd vertices. When examination of an original edge
[v, causes an unreached vertex w to become odd, we define pred (w) = v. From
predecessors and mates we can compute parents in the forest as follows: if v is an
origin, its parent p(v) is mate (v) if v is even, pred (v)' if v is odd; we assume that
mate (v) = null if v is a free vertex.

We also compute certain information necessary to construct an augmenting path.
For each odd vertex v condensed into a cycle we define a bridge. Suppose the
examination of an original edge [v, w] causes a blossom to form containing odd
vertex x. We define bridge (x) to be [v, if x is an ancestor of v' before condensing
or to be [w, v] if x is an ancestor of w'.

Initialization for each vertex v consists of defining origin (v) = v, executing
makeset (v), and making v even if it is free and unreached if it is matched. To
execute the algorithm we repeat the following step until detecting an augmenting
path or running out of unexamined edges [v, w] such that ti is even (see Fig. 9.5):

EXAMINE EDGE. Choose an unexamined edge [v, such that v' is even and
examine it, applying the appropriate case below.

Case 1. w' is odd. Do nothing.
Case 2. w' is unreached. Make w' odd and mate (w') even; define pred (w') = v.
Case 3. w' is even and t/ and w' are in different trees. Stop; there is an augmenting

path.
Case 4. w' is even, v' w', and v' and w' are in the same tree. A blossom has been

formed. Let u be the nearest common ancestor of v' and w'. For every vertex x
that is a descendant of u and an ancestor of v', perform link (find (u), find (x))
and if x is odd define bridge (x) [v, w]. For every vertex x that is a
descendant of u and an ancestor of w', perform link (find (u), find (x)) and if x
is odd define bridge (x) = [w, v]. Define origin (find (u)) = u.

To complete the implementation we must fill in a few more details. We need a
way to choose unexamined edges [v, w] such that v' is even. For this purpose weD

ow
nl

oa
de

d
03

/1
3/

16
 to

 1
55

.1
98

.3
0.

43
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

MATCHINGS
	

121

i+

(b) P = reverse (path (i,j))E1 path (i,a

= C j] EI Ei] B reverse(path (g;g)) Et path (f,a)

=C j, i, glet [f] EI reverse (path (h,h)) a path (e,o)

=[iii,g,f,h] a Ce,c0 a path (c,o)

= [j, i, g, f, h, e, d] a Cc] a reverse (path (b, b)) B path (oio)

= Cj, i,g, f, h,e, d,c,b,o J.

FIG. 9.5. Efficient implementation of blossom-shrinking. (a) Labeling of graph in Fig. 9.4. Plus
denotes an even, minus an odd vertex; arrows denote predecessors. Edges next to shrunken odd vertices
are bridges. Blossoms are circled. The origins of k, 1, m are a, e, e, respectively. (b) Construction of
augmenting path.

maintain the set of such edges, from which we delete one edge at a time. Initially the
set contains all edges [v, w] such that v is free. When an unreached vertex v becomes
even or an odd vertex v is condensed into a blossom, we add all edges [v, w] to the
set. By varying the examination order we can implement various search strategies.

We also need a way to distinguish between Case 3 and Case 4 and to determine
the set of edges to be condensed into a blossom if Case 4 applies. When examining
an edge [v, w] such that w' is even, we ascend through the forest simultaneously
from v' and from w', computing v, v', w,„ w', v,, w,, v 2, w2, • • • , where
v,, = p(v,) and w;+ , p(wi). We stop when reaching different free vertices from v
and from w (Case 3 applies), or when reaching from w' a vertex u previously reached
from v' or vice versa (Case 4 applies). In the Jatter case u is the nearest common
ancestor of v' and w', and the blossom consists of the vertices v0, v,, • • • , = u and
w0, w,, • • • , u. The number of vertices visited by this process is 0(n) in Case
3, at most twice the number of vertices on the cycle defining the blossom in Case 4.

The total number of vertices on all blossom cycles is at most 2n — 2, since there
are at most n — 1 blossoms and shrinking a blossom of k vertices reduces the
number of vertices in the graph by k — 1. A simple analysis shows that the disjoint
set operations, of which there are n makeset, at most n — 1 link and 0(m) find
operations, dominate the running time of the algorithm. If we use the data structure
of Chapter 2 to implement makeset, link and find, the time to detect an augmentingD

ow
nl

oa
de

d
03

/1
3/

16
 to

 1
55

.1
98

.3
0.

43
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

122	 CHAPTER 9

path is 0(ma(m, n)). The Gabow—Tarjan set union algorithm [11] is also usable
and reduces the running time to 0(m).

There remains the problem of constructing an augmenting path once one is
detected. Suppose the algorithm stops in Case 3, having found an edge [v, w] such
that v' and w' are even and in different trees. Let x be the root of the tree containing
v' and y the root of the tree containing w'; the algorithm determines x and y in the
process of detecting an augmenting path. Then reverse (path (v, x)) & path (w, y) is
an augmenting path, where reverse reverses a list (see Chapter 1) and path is
defined recursively as follows (see Fig. 9.5):

[v] if v = w,

[v, mate (V)] & path (pred (mate (v)), w) if
path (v, w)	 v w and v is even,

[v] & reverse (path (x, mate (v))) & path (y, w) if
v w and v is odd, where [x, y] = bridge (v).

The function path (v, w) defines an even-length alternating path from v to w
beginning with a matching edge, under the assumption that at some time during the
running of the blossom-shrinking algorithm v' is a descendant of w in the forest. An
induction on the number of blossoms shrunk verifies that path is correct. The time
required to compute path (v, w) is proportional to the length of the list returned,
since with an appropriate implementation of lists we can perform concatenation and
reversal in 0(1) time (see § 1.3). With this method the time needed to construct an
augmenting path is 0(n), and the time to find a maximum size matching is either
0(nma(m, n)) or 0(nm) depending on the disjoint set implementation.

This algorithm is not the last word on unweighted nonbipartite matching. Even
and Kariv [6], [14], in a remarkable tour-de-force, managed to generalize the
Hoperoft—Karp bipartite matching algorithm by including blossom-shrinking.
Their algorithm, though complicated, runs in 0(min {n2.5, m log log n}) time.
Micali and Vazirani [19], using the same ideas, obtained a simplified algorithm
with a running time of 0(m). Thus the best time bounds for unweighted bipartite
and nonbipartite matching are the same.

The situation is similar for weighted nonbipartite matching. Edmonds [4]
obtained an 0(n 4)-time algorithm that combines maximum weight augmentation
(Theorem 9.2) with blossom-shrinking. With Edmonds's method it is necessary to
perserve shrunken blossoms from augmentation to augmentation, only expanding or
shrinking a blossom under certain conditions determined by the search for a
maximum weight augmenting path. Gabow [9] and Lawler [18] independently
discovered how to implement this algorithm to run in 0(n3) time. Recently Galil,
Micali, and Gabow [12] reduced the time bound to 0(n m log n) by using an
extension of meldable heaps (see Chapter 3) to speed up the search for an
augmenting path. Thus the best known time bound for weighted nonbipartite
matching is 0(min {n 3 , n m log n}. This is slightly larger than the best known bound
for the bipartite case, 0(n m log (2 ,„ijon). Curiously, the bound is the same as the

D
ow

nl
oa

de
d

03
/1

3/
16

 to
 1

55
.1

98
.3

0.
43

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MATCHINGS	 123

best known bound for maximum network flow, although the algorithms for the two
problems use different data structures and techniques. We conjecture that there is
an 0(n m log (n 2 /m))-time algorithm for weighted bipartite matching.

References

[1] M. L. BALINSKI, Labelling to obtain a maximum matching, in Proc. Combinatorial Mathematics
and its Applications, North Carolina Press, Chapel Hill, NC, 1967, pp. 585-602.

[2] C. BERGE, Two theorems in graph theory, Proc. Natl. Acad. Sci., 43 (1957), pp. 842-844.
[3] J. EDMONDS, Paths, trees, and flowers, Canad. J. Math., 17 (1965), pp. 449-467.
[41 	 , Matching and a polyhedron with 0-1 vertices, J. Res. Nat. Bur. Standards Sect. B, 69

(1965), pp. 125-130.
[5] J. EGERVikRY, Matrixok kombinatórius tulajdonságairól, Mat. Fiz. Lapok, 38 (1931), pp. 16-28.

(In Hungarian.)
[6] S. EVEN AND 0. KARIV, An 0(n23) algorithm for maximum matching in genera! graphs, in Proc.

16th Annual IEEE Symposium on Foundations of Computer Science, 1975, pp. 100-112.
[7] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, STAM J. Comput., 4

(1975), pp. 507-518.
[8] L. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton Univ. Press, Princeton, NJ,

1962.
[9] H. N. GABOW, Implementation of algorithms for maximum matching on nonbipartite graphs,

Ph.D. thesis, Dept. Computer Science, Stanford Univ., Stanford, CA, 1973.
[10] 	 , An efficient implementation of Edmonds' algorithm for maximum matching on graphs,

J. Assoc. Comput. Mach., 23 (1976), pp. 221 -234.
[11] H. N. GABOW AND R. E. TARJAN, A linear-time algorithm for a special case of disjoint set union,

Proc. Fifteenth Annual ACM Symposium on Theory of Computing, 1983,246-251.
[12] Z. GALIL, S. MICALI AND H. GABOW, Maxima! weighted matching on genera! graphs, in Proc.

23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp. 255-261.
[13] J. E. HOPCROFT AND R. M. KARP, An n 512 algorithm for maximum matching in bipartite graphs,

STAM J. Comput., 2 (1973), pp. 225 -231.
[14] 0. KARiv, An 0(n23) algorithm for maximum matching in general graphs, Ph.D. thesis, Dept.

Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 1976.
[15] D. KON IG, Graphen und Matrizen, Mat. Fiz. Lapok, 38 (1931), pp. 116-119.
[16] 	 , Theorie der endlichen und unendlichen Graphen, Chelsea, New York, 1950.

[17] H. W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist. Quart., 2
(1955), pp. 83-98.

[18] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, New York, 1976.

[19] S. MICALI AND V. V. VAZIRANI, An 0(\fiTil • i EI) algorithm for finding maximum matching in
general graphs, in Proc. 21st Annual IEEE Symposium on Foundations of Computer Science,
1980, pp. 17-27.

[20] R. Z. NORMAN AND M. 0. RABIN, An algorithm for a minimum cover of a graph, Proc. Amer.
Math. Soc., 10 (1959), pp. 315-319.

[21] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Networks and Complex-
ity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[22] C. WITZGALL AND C. T. ZAHN, JR., Modification of Edmonds' maximum matching algorithm, J.
Res. Nat. Bur. Standards Sect. B, 69 (1965), pp. 91-98.

D
ow

nl
oa

de
d

03
/1

3/
16

 to
 1

55
.1

98
.3

0.
43

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

